
FEATURE

Predicting the performance of
extreme-scale supercomputer
networks |

A
modern supercomputer is the Internet in a microcosm, with tens of thousands of nodes—
computers not much di�erent from the one you may be using to read this article—all
hooked together via a high-speed network. However, while computers on the Internet

operate largely independently of each other, supercomputers regularly harness the power of
thousands to many tens of thousands of nodes at once to run a single application signi�cantly
faster than any lone computer could. Coordinating the e�orts of so many nodes requires massive
amounts of communication, making the design of the interconnection network critical to the
performance of the supercomputer as a whole.

In this article we present technology we are developing to predict the impact of various network-
design alternatives on the overall performance of supercomputing applications before the
supercomputer is even built. This is important because a large supercomputer can easily cost
tens to hundreds of millions of dollars (and in the case of Japan’s K supercomputer, over a billion
dollars). Being able to evaluate network technologies during their design phase helps ensure that
the supercomputer will provide as much performance as possible to applications.

 The Next Wave | Vol. 20 No. 2 | 2013 | 7

S c o t t P a k i n , X i n Yu a n , a n d M i c h a e l L a n g

8

Predicting the performance of extreme-scale supercomputer networks

Network topologies

Supercomputers gain their performance edge from
parallelism, the ability to perform many pieces of
work at the same time. Taking advantage of a super-
computer consequently requires an application to
divide up the work it has to perform into small chunks
that can be spread over a supercomputer’s nodes. In
practice, some of these chunks of work depend on
other chunks.

Consider, for example, an arithmetic expression
such as (5+5)×(6+8). �e two sums can be computed
concurrently, but the product cannot be computed
until a�er both sums have been computed. �is neces-
sitates communication, commonly taking the form
of inter-node messages sent over a communication
network. �e node computing one sum has to tell
the other node when it has �nished and what sum it
computed so the latter node can perform the multipli-
cation. (Alternatively, both nodes can communicate
their sum to a third node, which can multiply the two
sums.) Network speed is critical to application perfor-
mance. If the network is too slow relative to the time
spent in computation, which is likely the case for our
simple arithmetic example, there will be no perfor-
mance gain to be had from parallelism, and the super-
computer’s performance capabilities will be wasted.

While the Internet is composed of a motley con-
nection of subnetworks haphazardly linked together,
supercomputer networks gain some of their speed
advantage by exploiting homogeneous hardware ar-
ranged into regular patterns. �is avoids some nodes
lying in the boondocks of the network and slowing
down the entire application whenever distant nodes
need to communicate with them. Figure 1 illustrates
three topologies out of endless possibilities. Contrast
the irregular structure of �gure 1(a), which illustrates
the graph nature of the Internet’s topology, with the
symmetry in each of �gures 1(b) and (c), which il-
lustrate two common supercomputer topologies: a fat
tree and a three-dimensional torus (i.e., 3-D torus).

Nodes in the �gure are shown as blue spheres.
(Each of a modern supercomputer’s nodes typically
contains 10–100 processor cores, making a node a
powerful computer in its own right.) Network links
are portrayed in the �gure as lavender tubes and
switches are portrayed as salmon-colored boxes. A
switch receives data on one link and, based on where
the data is to be delivered, sends it out on another link.

FIGURE 1. Three examples of network topologies. Figure (a)
shows an example of a small-world network topology. Figure
(b), which depicts a fat tree, and �gure (c), which depicts a 3-D
torus, are two common supercomputer network topologies.

(a)

(b)

(c)

FEATURE

 The Next Wave | Vol. 20 No. 2 | 2013 | 9

For example, if the le�most node in the fat tree de-
picted by �gure 1(b) needed to communicate with the
rightmost node, it could send data to the switch above
it, which could forward the data to the switch above
it and then to the switch above it. �e topmost switch
could then forward the data diagonally down and to
the right, then diagonally down and to the right again,
and �nally down to the destination node.

An alternative route would be to start with a couple
of diagonally upward-and-rightward hops followed
by vertically downward hops. (As an exercise, see
if you can �nd a third path from the le�most node
to the rightmost node. Are there any more routes?)
We use the term routing algorithm to describe the
process by which switches select one route among
the alternatives.

�e importance of a topology such as a fat tree
is that there are multiple ways to get from any node
to any other node. Hence, if one route is congested,
data can proceed along a di�erent route. Consider
an analogy to cars and roads, with cars represent-
ing data, roads representing links, and intersections
representing switches. �e more roads connecting a
residential neighborhood to a commercial district, the
less tra�c is likely to appear on any given road. At the
extreme, one could connect every node to every other
node in a supercomputer to eliminate all congestion.
In practice, this is not done for the same reason that
there are not private roads connecting every house to
every other house in a town—cost. Switches and links
are expensive; hence, a network designer must simul-
taneously minimize the number of switches and links
while maximizing the number of alternative routes
between pairs of nodes. A 10,000 node supercomputer
with all-to-all connectivity would require one hundred
million links. At even a dollar apiece (an unrealisti-
cally small amount), this would dominate the cost of
the supercomputer.

Figure 1(c) illustrates a 3-D torus, another com-
mon supercomputer network topology and one
that makes di�erent trade-o�s from a fat tree with
respect to switch and link count and alternative
paths. In this topology, nodes and switches are ar-
ranged in a cube (or rather, rectangular cuboid)
formation, and wraparound links enable data sent
out one side of the network to re-enter on the other
side. For example, if the node in the lower le� of
�gure 1(c) needed to communicate with the node
in the upper right, the long way would be to travel

up-up-up-right-right-right-back-back-back. However,
the wraparound links enable the data to travel down
to the topmost position, then le� to the rightmost
position, and �nally forward to the backmost position,
taking three hops instead of nine.

Putting cost arguments aside for the moment and
assuming the same node count in both networks,
could a fat tree be expected to outperform a 3-D
torus, or would the 3-D torus likely be the faster net-
work? In the next section, we discuss how to answer
this question.

Simulating networks

As creating a new network is expensive and time-con-
suming, we want to be able to gauge how well a given
network might perform in advance of its construction.
�is is commonly done via network simulation—mim-
icking hardware’s behavior with slower but vastly more
malleable so�ware. We again turn to a car-and-road
analogy. Consider the situation of bumper-to-bumper
tra�c on two single-lane roads that merge into one
single-lane road, as shown in �gure 2. It would be
prohibitively expensive to construct the roads and hire
drivers to drive in the speci�ed pattern just to deter-
mine the speed at which tra�c can move. Instead, one
could write a computer program that moves virtual
cars on virtual roads and measures how much time
elapses in this virtual world. In networking terms, this
approach is called �it-level simulation because it tracks
every �it (a unit of data, typically a byte) as it moves
from switch to switch throughout the network.

A

C

B

FIGURE 2. To determine the speed at which vehicles can move
in bumper-to-bumper tra�c on two single-lane roads that
merge into one single-lane road, one can simulate this “net-
work” using a computer program. There are di�erent approach-
es to network simulation, which vary in speed and degree
of realism.

10

Predicting the performance of extreme-scale supercomputer networks

At each point in (virtual) time, the simulator con-
siders the current location of each �it in the network;
the routing algorithm, which is used to decide where
each �it should go next; the internal switch architec-
ture, which controls how link contention is resolved
(for example, a simple alternating of �its as illustrated
by the cars in �gure 2); and all the myriad other char-
acteristics that determine performance. With regard to
�gure 2, a simulator would need to take into consider-
ation not only the speed limits and layout of the road
system but also the decision-making process of each
driver on the road to know where the driver wants to
go and how he will negotiate with other drivers as to
who gets to go �rst when lanes merge.

�ere are two main problems with �it-level simu-
lation, one inherent and one arti�cial. �e inherent
problem is that simulating a large network at such a
�ne level of detail is necessarily slow—vastly slower
than real network hardware could run. �ousandfold
slowdowns are not uncommon. In other words, the
simulator might need to run for an hour to report how
a network might behave over the course of a single
second of execution. To put that slowdown in perspec-
tive, consider that many of the scienti�c applications
commonly run on supercomputers at Los Alamos Na-
tional Laboratory take hours to days to run; a few even
require months to over a year to complete. Dilating
such times by a factor of a thousand clearly limits the
practicality of simulating such applications. Conse-
quently, �it-level simulations must by necessity whittle
down their inputs to a more manageable size, simulat-
ing only small networks and for only brief periods of
time, which limits realism.

�e arti�cial problem is that for simplicity of opera-
tion, simulators are typically fed synthetic communi-
cation patterns rather than communication patterns
derived from actual supercomputing applications. For
example, two common test patterns are uniformly
random tra�c in which each node sends data to some
number of other nodes selected at random, and hot-
spot tra�c in which all nodes send data to a small sub-
set of the nodes selected at random. Second, almost all
simulation studies presented in the supercomputer-
network literature assume that communication begins
at �xed points in time, typically exclusively at the start
of the simulation. �ird, computation time is almost
universally ignored, even though this can greatly a�ect
the severity and impact of link contention.

Returning to our car-and-road metaphor, typical
simulator usage would be analogous to gauging the
quality of a layout of a city street under assumptions
like the following:

1. People drive randomly from one place to another
as opposed to, say, a bias to drive to the kids’
school at the beginning of the day, then to the
o�ce, then to the kids’ school again, and �nally
back home.

2. Everyone leaves home at exactly 9:00 a.m.,
drives directly to his destination, and leaves
the car there. A less-common variation on this
assumption is that Alice picks up Bob at ex-
actly 8:15 a.m., Carol at exactly 8:30 a.m., and
Dave at exactly 8:45 a.m. for their carpool to
work—all regardless of how heavy or light the
tra�c happened to be at the time or whether
a new highway had just been built to speed up
their commute.

3. No one stops to work, shop, or relax; all anyone
in the city does is drive.

It would be hard to lend much credence to any
result of such a study, yet this is very much how super-
computer networks are analyzed today. Again, this is
an arti�cial problem. �ere is no fundamental reason
that such assumptions must be made; they are merely
a convenience to simplify the simulation e�ort. In the
next section, we describe how we are improving the
state of the art in network-simulation technology, both
in terms of simulation speed and simulation realism.

A new approach to network simulation

Our goal is to address all of the shortcomings dis-
cussed above; in particular, our aim is to simulate all
of the following:

 Full-sized applications, not synthetic
communication patterns;

 Hours of application-execution time,
not seconds;

 Tens of thousands of nodes, not hundreds to
low thousands;

 Communication interleaved with computation,
not treated as independent; and

 Communication beginning when prior commu-
nication or computation ends, not at �xed points
in time.

 The Next Wave | Vol. 20 No. 2 | 2013 | 11

FEATURE

�e two mechanisms that underlie our approach
are �ow-based simulation and logical clocks. We now
describe each of these in turn.

Flow-based simulation

�e reason that �it-based simulation is so slow is that
supercomputer networks contain a massive number
of components, and each of these must be simulated
individually. Logically, if one were to simulate large
groups of components as single entities, this would
greatly reduce the amount of work, and therefore time,
required to run the simulation. We therefore choose
to consider a complete, end-to-end communication
operation as a single unit of simulation rather than
the numerous �its that get transmitted as part of
that operation.

Before we explain the details precisely, we present
the intuition behind our approach in terms of our run-
ning car-and-road analogy. Assuming a 40 mph speed
limit and that the distance from the front of one car to
the front of the next is 29 feet, the math works out to
two cars per second passing any particular point on
the road. Hence, if we knew that 100 cars wanted to go
from point A to point B and that there was no other
tra�c on the road, the �rst car in that sequence would
arrive a�er some given length of time (i.e., however
long it takes to drive from point A to point B on an
empty road, say three minutes), and the last car would
arrive 100 ÷ 2 = 50 seconds later.

We now consider the variation indicated by �gure
2: 100 yellow cars want to go from point A to point
B at the same time that 100 red cars want to go from
point C to point B. What impact does the shared seg-
ment of road have on the time it takes each of those
two �ows of cars to reach their destination? As before,
two cars per second are reaching point B, but because
the two �ows are interleaved, only one yellow car per
second and one red car per second can reach that
location. �e �rst car in each �ow is not delayed, so it
still takes our assumed three minutes to arrive at point
B, but the last car in each �ow arrives not 50 seconds
later but 100 ÷ 1 = 100 seconds later.

�e point of this exercise is to demonstrate that, un-
like with �it-level simulation, we do not have to con-
sider each individual car’s behavior. Instead, we can
analyze an entire sequence of cars at once, regardless
of whether there are a hundred cars in each �ow or a

million. Furthermore, we do not need to consider how
the drivers negotiate the merge. All that matters is that
there is an even 50–50 split between red and yellow
cars on the merged segment of road, not that it went
red–yellow–red–yellow versus red–red–yellow–yellow.

Our approach to network simulation works in
very much the same way as the preceding analysis
of tra�c speeds. As in the above instance, instead
of working with communication times directly, we
work with communication rates, which we can easily
relate back to time by noting that time = latency +
(data size ÷ communication rate), where latency is
the time it would take a single �it to move from the
source node to the destination node in the absence
of any other tra�c. For example, suppose that the
latency between node A and node B is 0.6 seconds
and that all of the links between node A and node
B are capable of transmitting 5 gigabytes per sec-
ond. If node A were to transmit 1 gigabyte of data
to node B, this communication would take a total of
0.6 + (1.0 ÷ 5.0) = 0.8 seconds.

While latencies are essentially constant and data
sizes can be extracted from an application (as we
will discuss further when we discuss logical clocks),
communication rates vary dynamically based on the
amount of link contention, the number of communica-
tions sharing a network link at any given time. Con-
sider the network topology shown in �gure 3 (i.e., a
2-D mesh).

FIGURE 3. An illustration of link contention on a 2-D mesh
network topology.

12

Predicting the performance of extreme-scale supercomputer networks

If node A sends data to node H via the route A–
B–E–H (cyan links) at the same time as node B sends
data to node F via the route B–E–F (magenta links),
the B–E link will be shared by the two routes. Sup-
posing the link is capable of transmitting at a rate of 5
gigabytes per second, 2.5 gigabytes per second will be
allocated to each of the two communications. Because
data cannot enter a link faster than it can exit, this
slow link then exerts back-pressure all the way to the
source nodes, slowing down the entire communication
to 2.5 gigabytes per second. Using the previously men-
tioned sample numbers from each of the two commu-
nications will now take 0.6 + (1.0 ÷ 2.5) = 1.0 seconds
instead of the contention-free 0.8 seconds computed
earlier—slower but notably not twice as slow, even
though the link speed e�ectively halved.

Logical clocks

We criticized prior simulation e�orts for relying on
synthetic communication patterns instead of actual
communication patterns derived from supercomput-
ing applications. Our question is therefore how we
can acquire an application’s communication pat-
tern so that it can be analyzed by a simulator. �e

enumeration of all communication that an application
performs during its execution—which node sent how
many bytes to whom when—is called a communication
trace. Fortunately, intercepting and logging an applica-
tion’s communication operations is fairly straightfor-
ward, and there exist numerous tools for collecting
communication traces.

�e issue is not with collecting the trace but with in-
terpreting it. Figure 4 helps clarify the problem. Figure
4(a) presents a trace of a communication pattern in
which node A sent a message to node C, then node B
sent a message to node C, then, a�er a brief interlude,
node C sent a message to node A, and �nally, node
C sent a message to node B. A graphical view of this
trace is shown in �gure 4(b). Send and receive times
are reported from the perspective of each node’s clock.
For example, the �rst line of the table in �gure 4(a)
indicates that node A reported that it sent a message
to node C at time 10 and that node C reported that it
received node A’s message at time 16.

�e �rst problem with this type of communication
trace is that supercomputer nodes seldom include per-
node clocks that are globally synchronized to within
half a message latency (i.e., the tolerance needed to

(a) Communication trace

Source

Node

Destination

Node

Sent

Time

Received

Time

A C 10 16

B C 14 20

C A 28 34

C B 30 36 35 40

N
o

d
e

C

B

A

0 5 10 15 20 25 30

Time

(b) Timeline view of the trace

(c) Communication trace with poorly synchronized clocks

Source

Node

Destination

Node

Sent

Time

Received

Time

A C 14 12

B C 14 16

C A 24 38

C B 26 36 35 40

N
o

d
e

C

B

A

0 5 10 15 20 25 30

Time

(d) Timeline view of the trace with poorly synchronized clocks

FIGURE 4. Example of a communication pattern. Figure (a) and (b) illustrate a communication trace of nodes with per-
fectly synchronized clocks (an unrealistic condition). Figure (c) and (d) illustrate a communication trace of nodes with poorly
synchronized clocks.

 The Next Wave | Vol. 20 No. 2 | 2013 | 13

FEATURE

avoid erroneous readings, as discussed
below). �ese would represent a costly but
rarely useful expense. Furthermore, access
to a single, centralized clock would be dev-
astating to performance—imagine �gure
2 with tens of thousands of lanes merging
into one. Hence, some node clocks may run
slightly ahead or behind others, and even
worse, some node clocks may run slightly
faster or slower than others. �is is called
clock dri�. Although clock-synchronization
algorithms exist, so�ware implementa-
tions are unable to synchronize clocks
to a granularity �ne enough to measure
network-communication time.

Figure 4(c) represents the same trace as
�gure 4(a) but as measured with node A’s
clock running four time units late and node
C’s clock running four time units early. As
the graphical depiction of this trace in �g-
ure 4(d) clari�es, the faulty clocks make the �rst mes-
sage appear to have been received before it was sent,
a physical impossibility. Furthermore, instead of each
message taking a constant six time units to get from
source to destination as indicated by the “perfect”
trace in �gure 4(a), the B–C communication in �gure
4(c) appears to take only two time units while the C–B
communication appears to take ten.

�e second problem with using �gure 4-style com-
munication traces involves how the simulator replays
the traced communication pattern. Suppose we want-
ed to simulate a network that runs twice as fast as the
one on which the communication trace was acquired
or perhaps the same network attached to processors
running three times as fast as on the measurement
system. It would be unreasonable in either case to
expect all of the messages to be sent at the same times
shown in �gure 4(a). A node that receives a message
sooner or �nishes some computation faster may then
be able to send a message earlier. We therefore do not
want our simulator necessarily to simulate messages
being sent at the times listed in the input trace but
rather at the times that the simulated supercomputer
would actually send them.

�e solution to both of the preceding problems is
an abstraction called a logical clock, �rst proposed by
Lamport in 1978 [2] and sometimes called a Lamport
clock a�er its inventor. A logical clock is a simple, inte-
ger counter that “ticks” as follows:

1. When a node performs any operation (commu-
nication or computation), its clock advances its
logical time by one.

2. When a node sends a message, its clock in-
cludes the current logical time along with the
normal data.

3. When a node receives a message, it sets its logi-
cal clock to the maximum of its current logical
time and one plus the logical time included in
the message.

�ese rules help de�ne a “happened before” relation
(mathematically, a partial ordering) on communica-
tion operations. If one operation occurred at a smaller
logical time than another, then the simulator cannot
perform the second operation until the �rst one �n-
ishes. In contrast, if two operations occur at the same
logical time, the simulator has no restrictions on the
order it performs them: it can run A then B, B then A,
or both simultaneously. In essence, a logical clock pro-
vides a way to globally order communication opera-
tions regardless of the locally observed time at which
each operation may appear to have occurred.

To clarify using yet another driving analogy, con-
sider Alice’s and Carol’s sequences of events, presented
in �gure 5.

In what order did those events happen? It would be
incorrect to sort them by the times listed in the event
descriptions because Alice and Carol may not have
synchronized their watches beforehand and because

Alice’s Journal

I left home at 3:30 p.m. to drive my
son to soccer practice. When I got
to the soccer field my watch read
3:55 p.m.

I left the soccer field five minutes
later, at 4:00 p.m., to join Carol for
tea. I arrived at the tea house at the
same time as Carol, at 4:30 p.m.
according to my watch.

After a lovely hour of tea with Carol,
we both drove home at the same
time, when my watch read 5:30
p.m. just in time to make dinner.

Carol’s Journal

I left home at 6:30 p.m. to join
Alice for tea. I arrived at the tea
house at 7:00 p.m. according to
my watch, which is right when
Alice arrived.

I had an enjoyable tea time with
Alice. We both left 45 minutes later,
at 7:45 p.m. on my watch, to drive
home. I got home at 8:05 p.m.

FIGURE 5. The ordering of events from Alice’s and Carol’s perspective.

14

Predicting the performance of extreme-scale supercomputer networks

either watch may run faster or slower than the other.
Nevertheless, we can intuitively rely on what makes
sense to order the speci�ed events. Speci�cally, we
know that Alice must have driven to the soccer �eld
before driving from the soccer �eld; we know that
both Alice and Carol were at the tea house at the same
time; and we know that both Alice and Carol le� the
tea house at the same time a�er having tea together.

Figure 6 shows how to express that “what makes
sense” intuition as formal statements of changes to
logical time. �e table assigns one logical clock to
each location (as opposed to each person) mentioned
and lists the events that Alice observed, in order,
followed by the events that Carol observed, in order.
(�e results would be the same if we swapped or even
interleaved Alice’s and Carol’s journals, as long as the
events were not reordered relative to how they ap-
pear in either journal.) In our network-simulation
framework, locations correspond to nodes, and a
person driving from location to location corresponds
to communication.

At the beginning, all locations are at logical time
1, and Alice and Carol are both in their respective
home. When Alice drives to the soccer �eld, she must
arrive some time a�er she was at home. �e soccer
�eld therefore increments its logical time to 2, the

maximum of its current time (1) and one plus the
time at Alice’s house (1 + 1). When Alice drives to the
tea house, she must arrive some time a�er she le� the
soccer �eld. �e tea house therefore increments its
logical time to 3, the maximum of its current time (1)
and one plus the time at the soccer �eld (1 + 2). When
Alice drives home, she must arrive both a�er the last
time she was there (1) and a�er she le� the tea house
(3), that is to say, at time 4.

Turning our attention to Carol, Carol must arrive
at the tea house at a time later than when she was at
home. However, the tea house’s clock does not change
because the maximum of its current time (3) and
one plus the time at Carol’s house (1 + 1) is already 3.
Finally, when Carol drives home, she must arrive both
a�er the last time she was there (1) and a�er she le�
the tea house (3), that is to say, at time 4.

For clarity, the bottom part of �gure 6 re-sorts the
data by logical time, showing which events happened
at each time. From this presentation, one can infer that
despite the physical times stated in the event descrip-
tions, Alice could not possibly have returned home be-
fore Carol arrived at the tea house (time 4 versus time
3). However, the logical-clock readings in �gure 6 say
nothing about whether Alice arrived back at her home
before Carol arrived back at her home (time 4 for

Logical time spent at various locations

Event Alice’s House Carol’s House Soccer Field Tea House

(Our story begins) 1 1 1 1

Alice’s Soccer 1 1 2 1

Soccer Tea 1 1 2 3

Tea Alice’s 4 1 2 3

Carol’s Tea 4 1 2 3

Tea Carol’s 4 1 2 4

Logical Time Observable Events

1 Alice and Carol are both at home.

2 Alice is at the soccer �eld. Carol may be either at home or en route to the tea house. We have insu�cient
information to determine which.

3 Alice and Carol are both at the tea house.

4 Alice and Carol are both at home. We have insu�cient information to determine who arrived �rst.

FIGURE 6. The ordering of events based on logical time.

 The Next Wave | Vol. 20 No. 2 | 2013 | 15

FEATURE

both events). More subtly, the readings do not indicate
which of Alice or Carol arrived �rst at the tea house
(as both soccer → tea and Carol’s → tea completed at
time 3); we know only that neither le� (time 4) before
both arrived (time 3).

Logical clocks provide an important mechanism
for ful�lling the goals stated at the beginning of this
section in that they enable a network simulator to
reason about communication dependencies—what
must happen before what—rather than physical times.
One additional innovation of our network-simulation
methodology is that we record computation time in
physical time. In �gure 6’s analogy, this would be like
a waiter at the tea house reporting how long Alice
and Carol spent there. Maintaining this information
enables the simulator to honor computation time,
which may have substantial impact on communication
time. Consider, for example, how much faster the cars
in �gure 2 would move if the yellow cars were on the
road only in the morning and the red cars were on the
road only in the a�ernoon.

Even without perfectly synchronized, dri�-free
node clocks, combining physical computation time
with logical communication time enables us to ac-
curately reproduce application timing measurements
and provide some con�dence that varying hardware
parameters will lead to accurate predictions of perfor-
mance. In the following section we quantify how well
this works by presenting an early evaluation of our
simulation methodology.

Initial results

Our simulation project is still in its early stages.
However, the logical-time trace acquisition so�ware
and the simulator itself are operational and support
a su�cient set of features for an initial evaluation of
our approach.

As a sample application, we use a hydrodynamics
code developed at Los Alamos National Laboratory
called PAGOSA. PAGOSA is designed to simulate
high-speed �uid �ow and high-rate material defor-
mation [1]. �e application comprises approximately
67,000 lines of code (about 1,000 printed pages),
mostly written in Fortran but with some C. PAGOSA’s
constituent processes are logically arranged in a
three-dimensional layout and communicate primarily

with their immediate north, south, east, west, front,
and back neighbors. �is is an ideal structure for a
three-dimensional network such as the one shown
in �gure 1(c) if the application’s coordinates directly
map to the network’s coordinates. For example, map-
ping a 6 × 6 × 6 PAGOSA layout onto a 6 × 6 × 6
network could be expected to perform well. In con-
trast, mapping it onto a 6 × 4 × 9 network would in
fact make some “neighbors” not adjacent to each
other, leading to link contention. In practice, users are
rarely given control over the set of nodes allocated to
their applications.

We ran PAGOSA on 1,000 nodes of a 1,600-node
supercomputer called Mustang. Mustang is based on a
fat-tree network such as the one shown in �gure 1(b),
but 200 times larger. More precisely, �gure 1(b) repre-
sents what is o�en called a 2-ary 3-tree, because each
switch connects to two switches in each adjacent row
and there are three rows of switches. Mustang uses an
18-ary 3-treea so each switch connects to 18 switches
in each adjacent row, but there are still only three rows
in the network, just as in �gure 1(b). As of June 2013,
Mustang was rated the 137th fastest supercomputer in
the world [3].

Full-application simulation at scale

PAGOSA was con�gured to execute a canonical
hydrodynamics test problem, the simulation of a
spherical shell of beryllium being subjected from all
directions to a given amount of kinetic energy, which
compresses the shell. Figure 7 presents the results of
simulating this PAGOSA execution using the sets of
network parameters listed in table 1.

�e �rst bar, labeled Fat tree, measured, indicates
that the PAGOSA test problem normally takes an hour
and a half to complete on Mustang. �e second bar,
Fat tree, demonstrates that our simulator is quite ac-
curate, being only 6.4% above the correct value. Recall
that our work is still in its early stages; we hope in the
near future to improve simulation accuracy. �e sec-
ond and subsequent bars each represent between 14½
and 15½ hours of time running the simulator on a
single desktop computer. �is is a noteworthy success:
Even though we used a thousandth of the number of
nodes as in the real execution, our simulator took only
tenfold the time to run. And, unlike real execution,

a. Mustang in fact contains an incomplete 18-ary 3-tree—an XGFT (3; 18, 6, 16; 1 6 18) in Öhring’s notation [4]—and this is what
we simulate.

16

Predicting the performance of extreme-scale supercomputer networks

our simulator enables limitless “what if ” experimenta-
tion with di�erent network topologies and network
performance characteristics.

As a demonstration of that capability, the remain-
ing bars in �gure 7 show the results of simulating
di�erent networks from Mustang’s actual network. As
detailed in table 1, Fat tree, slow represents a substan-
tially slower network than Fat tree. 3-D torus uses the
same network speeds as Fat tree but with a 3-D torus
topology instead of a fat tree. Likewise, 3-D torus, slow
uses the same network speeds as Fat tree, slow but with
a 3-D torus topology instead of a fat tree. 3-D torus,
shu�ed represents the same topology and network
speeds as 3-D torus but randomly shu�es the mapping
of PAGOSA processes to torus nodes. Torus networks
are notoriously sensitive to process placement, and we
can use our simulation technology to evaluate how
sensitive a given application is to the placement of its
constituent processes.

�e clear implication of �gure 7 is that PAGOSA’s
overall performance is almost completely oblivi-
ous to network performance. Despite the simulated
variations in network topologies and speeds, the
di�erence in execution time from one network to
another is a tiny fraction of a percent. Although the
1,000-node run of PAGOSA communicated an ag-
gregate of two billion messages comprising a total
of 14 terabytes of data, communication time is so
dominated by computation time that network speed is
largely inconsequential.

Comparison with simplistic simulators

We have shown that �ow-based simulation delivers
simulation speed and that logical clocks provide high
�delity to actual application execution time. �e next
question to consider is how our approach compares to
the more simplistic approach employed by most net-
work-simulation studies. While our simulator honors
both communication dependencies and computation
time, it is far more typical in the simulation literature
to pretend that all messages are sent simultaneously at
time 0 and to simulate the time it takes all messages to
reach their destination in the absence of computation.

We con�gured our simulator to disregard commu-
nication dependencies and computation time, in es-
sence dumbing down our simulator to the capabilities
of a more traditional network simulator. �e results,
shown in �gure 8, paint a very di�erent picture of
performance from �gure 7.

�e total height of each bar represents the time
for the last message in the corresponding simula-
tion to complete. �e light purple region represents
the average time for a message to complete. While
�gure 7 indicates that PAGOSA’s total execution time
is almost completely independent of communication
time, �gure 8 exaggerates the di�erences. Speci�cally,

Fat tree,
measured

Fat tree Fat tree,
slow

3-D torus 3-D torus,
slow

3-D torus,
shuffled

0

1,000

2,000

3,000

4,000

5,000

6,000

Ti
m

e
(s

)

Simulation

Better

Worse

FIGURE 7. Simulated PAGOSA execution time using the sets of
network parameters in table 1.

TABLE 1. Simulation parameters

Simulation Topology Link Speed (Gbps) Switch Latency (ns) Software Overhead (ns)

Fat tree 18-ary 3-tree 40 100 1,500

Fat tree, slow 18-ary 3-tree 10 400 4,000

3-D torus 8 x 16 x 16 torus 40 100 1,500

3-D torus, slow 8 x 16 x 16 torus 10 400 4,000

3-D torus, shu�ed 8 x 16 x 16 torus 40 100 1,500

 The Next Wave | Vol. 20 No. 2 | 2013 | 17

FEATURE

Fat tree Fat tree,
slow

3-D torus,
slow

0

2

4

6

8

10

12

14

16

18

Ti
m

e
(s

) Maximum

Average

3-D torus

Better

Worse

Simulation

FIGURE 8. Di�erences in simulated communication time only.

the 3-D torus requires 70% more time than the fat tree
to transfer PAGOSA’s two billion messages. For both
network topologies, quartering the bandwidth exactly
quadruples the communication time.

�is study demonstrates that it is critical to include
communication dependencies and computation time
in a network simulation. Otherwise, di�erences in net-
work topology and basic performance characteristics
appear more signi�cant than they really are. �is mis-
leading information could persuade a supercomputing
center to pay extra for a faster network when a slower,
less expensive network may deliver almost exactly the
same performance to applications.

Conclusions

Modern supercomputers are architected as vast aggre-
gations of processors interconnected with high-speed
networks. Because scienti�c applications are generally
composed of myriad processes working together to
simulate natural phenomena, communication speed
is critical for e�ciently coordinating all of those
processes. However, engineering a high-speed net-
work involves inevitable cost/performance trade-o�s.
Furthermore, all applications use the network dif-
ferently, contraindicating a one-size-�ts-all solution.
Some applications transmit a large number of small
messages; others transmit a small number of large
messages. In some applications, each node commu-
nicates with only a small set of other nodes; in others,
all nodes communicate with all of the others. Some
applications communicate continuously throughout
their execution; others alternate communication and
computation phases.

Supercomputing centers want to maximize the
overall performance delivered to the applications they
expect to run but without overpaying for unneces-
sary network performance. One way to predict how
well a given application will perform on a particular
network in advance of its procurement is via a tech-
nique called network simulation. With simulation, one
mimics hardware’s behavior and performance charac-
teristics using a so�ware test bed. Simulating hard-
ware is slower—typically many thousands of times
slower—than running on true hardware but is cheap
to deploy and easy to modify to investigate di�erent
design alternatives.

�e problem with existing network simulators and
simulation studies is that they tend to incorporate so
much detail that they cannot handle large numbers of
nodes or substantial lengths of time. Furthermore, for
simplicity of implementation they ignore the juxta-
position of communication with computation and
with other communication, unrealistically assuming
that all messages are initiated in a single burst. In this
article we proposed addressing the speed issue with
�ow-based simulation and the realistic-usage issue
with logical clocks that are augmented with physical
computation time. To demonstrate the potential of
this approach we implemented a tool to derive logical-
time traces from parallel applications and a �ow-based
simulator to replay those traces on di�erent simu-
lated network topologies and with di�erent network
performance characteristics.

One can draw the following conclusions from the
experimental data we presented. First, our approach
accurately simulates real execution time. Although
our implementation is in its nascent stages, we already
saw less than 7% error when simulating a scienti�c
application, PAGOSA, running for an hour and a half
across a 1,000-node network. Second, �ow-based
simulation runs at reasonable speeds. We replayed that
1,000-node, hour-and-a-half run on di�erent simu-
lated networks using only a single node, and it ran
only 10 times slower than real time, not thousands or

18

Predicting the performance of extreme-scale supercomputer networks

tens of thousands, which is what is typical for a more
traditional network simulator. �ird, the common
simpli�cation of ignoring communication dependen-
cies and computation time in network simulations
exaggerates the pressure the application applies to
the network and leads to incorrect assessments of
network performance.

In our experiments, we found that PAGOSA per-
forms so much computation relative to communica-
tion that the network topology and basic performance
characteristics are largely inconsequential. In contrast,
a more traditional network simulator would incorrect-
ly claim 70% more performance for a fat-tree topology
than for a 3-D torus topology when replaying PAGO-
SA’s communication pattern.

In summary, combining logical time with �ow-
based simulation opens up new avenues for evaluating
how fast applications will run on di�erent super-
computer networks, most notably supercomputer
networks that have not yet been built. �is capability
can inform network design decisions—or even simply
a selection from multiple existing networks—to help
provide applications with the best communication
performance that the supercomputer budget allows.

About the authors

Scott Pakin is a research scientist at Los Alamos
National Laboratory. He has been actively working
in the area of high-performance network research
for over 15 years, beginning with the development
of Fast Messages, one of the �rst high-speed messag-
ing layers for a commodity supercomputing network,
Myrinet; and more recently including the Cell Messag-
ing Layer, which makes it practical for computational
accelerators to communicate directly across a deep,
heterogeneous network hierarchy; and coNCePTuaL,
a domain-speci�c language, compiler, and run-time
system that facilitate the rapid generation of custom
network speed tests with repeatable results.

Dr. Pakin has served on numerous network-related
national and international conference and workshop
program committees, including the position of area
cochair for the Architecture and Networks track of
this year’s annual Supercomputing Conference (SC’13)
and continuing cochair service for the annual Com-
munication Architecture for Scalable Systems (CASS)
workshop. He also served as a guest editor for the

November 2012 special issue of Elsevier’s Journal of
Parallel and Distributed Computing, which focused on
interconnection networks. Dr. Pakin received a BS in
mathematics/computer science with research honors
from Carnegie Mellon University in 1992, an MS in
computer science from the University of Illinois at
Urbana-Champaign in 1995, and a PhD in computer
science from the University of Illinois at Urbana-
Champaign in 2001.

Xin Yuan is a full professor in the Department of
Computer Science at Florida State University and
recently took a research sabbatical at Los Alamos Na-
tional Laboratory. His research interests include paral-
lel and distributed systems, interconnection networks,
communication optimizations, and networking. He
obtained his BS and MS degrees in computer science
from Shanghai Jiaotong University in 1989 and 1992,
respectively. He earned his PhD degree in computer
science from the University of Pittsburgh in 1998. He
publishes extensively on interconnection networks
and communication-library implementation and
optimizations.

�e Self-Tuned Adaptive Routines for Message
Passing Interface (STAR-MPI) so�ware package that
he and his students developed has been incorporated
into the so�ware stack of IBM’s Blue Gene/P super-
computer. Professor Yuan is currently serving on the
editorial boards of several international journals. He
has also served as the program chair and vice chair for
several international conferences and workshops, such
as the International Conference on Parallel Processing
(ICPP) and the Institute of Electrical and Electronics
Engineers (IEEE) International Conference on High
Performance Computing (HiPC), and as a program
committee member for many international confer-
ences and workshops. He is a senior member of both
the Association for Computing Machinery (ACM)
and IEEE.

Michael Lang is the team leader of the Ultrascale
Systems Research at Los Alamos National Laboratory.
His research interests include distributed services,
performance of large-scale systems, operating-system
and run-time issues for supercomputers, and intercon-
nects for large-scale systems. He has published work
on the application-speci�c optimization of routing on
In�niBand interconnects for large-scale systems. No-
tably, this algorithm is currently included in OpenSM
in the OpenFabrics so�ware stack. Lang was formerly

References

[1] Kothe DB, Baumgardner JR, Cerutti JH, Daly BJ, Holian
KS, Kober EM, Mosso SJ, Painter JW, Smith RD, Torrey
MD. “PAGOSA: A massively parallel, multi-material hydro-
dynamics model for three-dimensional high-speed �ow and
high-rate material deformation. In: Tentner A, editor. High
Performance Computing Symposium 1993: Grand Challenges
in Computer Simulation (Proceedings of the 1993 Simula-
tion Multiconference on the High Performance Computing
Symposium; Mar 29–Apr 1, 1993, Arlington, VA). San Di-
ego (CA): Society for Computer Simulation; 1993. p. 9–14.
ISBN: 978-1565550520.

[2] Lamport L. “Time, clocks, and the ordering of events
in a distributed system.” Communications of the ACM.
1978;21(7):558–565. doi: 10.1145/359545.359563.

[3] Meuer H, Strohmaier E, Dongarra J, Simon H. TOP500
Supercomputer Sites: June 2013 [accessed 2013 Aug 2].
Available at: http://www.top500.org/lists/2013/06.

[4] Öhring SR, Ibel M, Das SK, Mohan J K. “On generalized
fat trees.” In: Proceedings of the 9th International Parallel
Processing Symposium; Apr 1995, Santa Barbara, (CA). p.
37–44. doi: 10.1109/IPPS.1995.395911.

 The Next Wave | Vol. 20 No. 2 | 2013 | 19

a member of Los Alamos National Laboratory’s Per-
formance and Architecture team, involved in perfor-
mance analysis of new large-scale systems for the US
Department of Energy. He received a BS in computer
engineering and an MS in electrical engineering in
1988 and 1993 respectively, both from the University
of New Mexico.

